Encabezado Facultad de Ciencias
Presentación

Física (plan 2002) 2018-2

Optativas, Temas Selectos de Óptica II

Grupo 8328, 23 lugares. 10 alumnos.
Solitones Ópticos
Profesor Jorge Fujioka Rojas ma ju 12 a 13:30 P112
Ayudante Aurea Espinosa Cerón
 

TEMAS SELECTOS DE ÓPTICA: SOLITONES ÓPTICOS

JORGE FUJIOKA, Instituto de Física, Cubículo 55.

fujioka@fisica.unam.mx
http://solitonesopticos.blogspot.com

Horario:

Martes y Jueves 12:00 a 13:30

Empezaremos el jueves 8 de Feb.

Salón P-112

Pre-requisitos:

Cálculos I-IV, Ecs. Dif. I, Variable compleja I, Electromagnetismo I.

Evaluación:

Tareas (80%) y 2 exámenes (20%).

RESUMEN:

Los solitones ópticos son pulsos de luz de muy corta duración (alrededor de 5 ps) que pueden viajar por fibras ópticas sin deformarse. La existencia de estos pulsos es el fundamento de la tecnología en telecomunicaciones por fibra óptica. Esta tecnología es realmente sorprendente, ya que en lo sistemas comerciales más eficientes se envían cien mil millomes de pulsos de luz cada segundo (por una sola fibra óptica), y en los sistemas experimentales ya se pueden enviar 20 millones de millones de pulsos por segundo.

Pero las aplicaciones tecnológicas no son el único atractivo de los solitones ópticos. Otro atractivo (quizás mayor) es que el comportamiento de estos solitones está gobernado por una ecuación diferencial parcial (EDP) sumamente interesante:

la ecuación no lineal de Schrödinger (NLS)

Esta ecuación es, probablemente, la EDP no lineal más interesante de la física-matemática. En este curso veremos, entre otras cosas:

a) cómo surge esta ecuación,

b) cómo deducir esta ecuación de una lagrangiana,

c) qué soluciones tiene,

d) cómo calcular la estabilidad de estas soluciones,

e) cómo calcular las cantidades que se conservan (vía el teorema de Noether),

f) cómo interactúan los solitones,

g) qué variantes de la ecuación NLS existen,

h) cómo generalizar la ecuación NLS mediante derivadas fraccionarias.

Uno de los objetivos del curso es que al final del semestre los alumnos estén en condiciones de empezar a trabajar en este campo.

TEMARIO:

1. Nacimiento de los solitones ópticos y las telecomunicaciones por fibra

óptica.

2. La ecuación KdV (Korteweg-de Vries).

3. Interacción de solitones.

4. Dispersión.

5. Parte lineal de la ecuación NLS.

6. Atenuación, fuentes de luz, y longitudes óptimas en telecomunicaciones.

7. Deducción de la ecuación NLS a partir de las ecuaciones de Maxwell.

8. Deducción de la ecuación NLS mediante el método de escalas múltiples.

9. Solitones ópticos “espaciales” y “temporales”.

10. Parte no lineal de la ecuación NLS.

11. Cálculo variacional y método variacional de Anderson.

12. Solitones “embebidos” y ausencia de radiación.

13. Criterio de estabilidad de Vakhitov-Kolokolov.

14. Rompimientos de simetría.

15. Métodos variacionales de Malomed y Hasegawa.

16. Propiedad de Painlevé y formas bilineales de Hirota.

17. Teorema de Noether.

18. Cálculo fraccionario y solitones ópticos fraccionarios.

19. Solitones oscuros.

20. Solitones discretos.

21. Solitones caóticos.

22. Relación entre el Último Teorema de Fermat y los Solitones Ópticos.

Bibliografía básica (textos):

1. J. Fujioka:

NLS: Una introducción a la ecuación no lineal de Schrödinger,

Serie FENOMEC, UNAM, 2003.

2. Y.S. Kivshar and G.P. Agrawal:

Optical Solitons: From Fibers to Photonic Crystals,

Academic Press, San Diego , CA , 2003.

3. G.P. Agrawal:

Nonlinear Fiber Optics,

Academic Press, 3a edición, 2001.

4. A. Hasegawa and M. Matsumoto:

Optical Solitons in Fibers,

Springer-Verlag , Berlin, Heidelgerg, 3a edición, 2003.

5. J. Hecht:

Understanding Fiber Optics,

3a edición, Prentice Hall, New Jersey, 1999.

Bibliografía complementaria (artículos):

6. J. Fujioka and A. Espinosa:

Stability of the Bright-type Algebraic Solitary-Wave Solutions

of Two Extended Versions of the Nonlinear Schrödinger Equation.

J. Phys. Soc. Japan 65 (1996) 2440-2446

7. J. Fujioka and A. Espinosa:

Soliton-like Solutions of an Extended NLS Equation

Existing in Resonance with Linear Dispersive Waves.

J. Phys. Soc. Japan 66 (1997) 2601-2607

8. J Fujioka:

La Propiedad de Painlevé

CIENCIA ergo sum 8 (Nov. 2001 – Feb. 2002) 319-328

9. A. Espinosa-Cerón, J. Fujioka and A. Gómez-Rodríguez:

Embedded Solitons: Four-Frequency Radiation,

Front Propagation and Radiation Inhibition.

Physica Scripta 67 (2003) 314.

10. R.F. Rodríguez, J.A. Reyes, A. Espinosa-Cerón, J. Fujioka and B.A.

Malomed:

Standard and Embedded Solitons in Nematic Optical Fibers.

Phys. Rev. E 68 (2003) 036606-1/14.

11. S. González-Pérez-Sandi, J. Fujioka and B.A. Malomed:

Embedded Solitons in Dynamical Lattices.

Physica D 197 (2004) 86.

12. J. Fujioka, A. Espinosa-Cerón and R.F. Rodríguez:

A survey of embedded solitons.

Rev. Mex. de Física 52 (2006) 6-14.

13. J. Fujioka, A. Espinosa and R.F. Rodríguez:

Fractional Optical Solitons.

Physics Letters A 374 (2010) 1126-1134.

14. J. Fujioka, E. Cortés, R. Pérez-Pascual, R.F. Rodríguez, A. Espinosa

and B.A. Malomed:

Chaotic solitons in the quadratic-cubic NLS equation

under nonlinearity management.

Chaos 21 (2011) 033120.

15. J. Fujioka:

Fractional equivalent Lagrangian densities for a fractional higher-order

NLS equation.

Journal of Physics A 47 (2014) 212001 (Fast Track Communication)

16. J. Fujioka and A. Espinosa:

Diversity of solitons in a generalized nonlinear Schrödinger equation

With self-steepening and higher-order dispersive and nonlinear terms.

Chaos 25 (2015) 113114.

17. J. Fujioka, M. Velasco and A. Ramírez:

Fractional optical solitons and fractional Noether´s theorem

with Ortigueira´s centered derivatives.

Applied Mathematics 7 (2016) 1340-1352.

18. J. Fujioka, A. Gómez-Rodríguez and A. Espinosa-Cerón:

Pulse propagation models with bands of forbidden frequencies

or forbidden wavenumbers:

a consequence of abandoning the slowly varying approximation

and taking into account higher-order dispersion.

Applied Sciences 7 (2017) 340.

 


Hecho en México, todos los derechos reservados 2011-2016. Esta página puede ser reproducida con fines no lucrativos, siempre y cuando no se mutile, se cite la fuente completa y su dirección electrónica. De otra forma requiere permiso previo por escrito de la Institución.
Sitio web administrado por la Coordinación de los Servicios de Cómputo de la Facultad de Ciencias. ¿Dudas?, ¿comentarios?. Escribenos.