

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO LICENCIATURA EN CIENCIAS DE LA TIERRA FACULTAD DE CIENCIAS

Denominación de la Asignatura: Matemáticas para las Ciencias de la Tierra IV									
Clave:	Semestre:	Área de conocimiento:		Ciclo:					
1417	4	Matemáticas		Básico del tronco común					
Carácter:	Obligatoria (x) Optativa () de Elección ()	Horas po	or semana	ana Horas al semestre No. Créditos:				
T: T-4-			Teóricas:	Prácticas:	96 12				
Tipo: Teór	ica		6	0					
Modalidad: Curso			Duración del programa: 16 semanas						

Seriación: Si (x) No () Obligatoria () Indicativa (x)

Asignatura con seriación antecedente: Matemáticas para las Ciencias de la Tierra III

Asignatura con seriación subsecuente: Análisis y procesamiento de Señales Digitales; Estadística Aplicada; Fenómenos Electromagnéticos; Impacto de los Fenómenos Terrestres; Matemáticas Avanzadas de las Ciencias de la Tierra; Mecánica Analítica; Métodos Geofisicos de Exploración; Taller de Modelación Numérica; Temas Selectos de Ciencias Acuáticas I; Temas Selectos de Ciencias Acuáticas II; Temas Selectos de Ciencias Ambientales II; Temas Selectos de Ciencias Atmosféricas I; Temas Selectos de Ciencias Espaciales II; Temas Selectos de Ciencias Espaciales II; Temas Selectos de Ciencias de Ia Tierra Sólida II

Objetivo(s) del curso:

- 1. El estudiante comprenderá el significado geométrico de ecuaciones diferenciales. Aprenderá los métodos analíticos y numéricos más utilizados para su resolución. Será capaz de formular problemas de muy distintos orígenes mediante ecuaciones diferenciales o sistemas de ecuaciones diferenciales, así como de interpretar las soluciones obtenidas. Podrá mediante análisis obtener algunas conclusiones respecto al comportamiento cualitativo de las soluciones de sistemas de ecuaciones no lineales.
- 2. Entenderá los modelos clásicos de la Física que ejemplifican los tres tipos de Ecuaciones Diferenciales Parciales de segundo orden y aprenderá los métodos básicos para su resolución.

Índice Temático							
l luido d	Tomas	Horas					
Unidad	Temas	Teóricas	Prácticas				
PARTE I: Ecuaciones Diferenciales Ordinarias							
1.	Ecuaciones Diferenciales de 1er Orden	12	0				
2.	Existencia y unicidad de soluciones	10	0				
3.	Ecuaciones Diferenciales de 2º Orden	12	0				
4.	Ecuaciones diferenciales de 2º Orden con coeficientes variables	6	0				
5.	Sistemas de Ecuaciones	12	0				
	PARTE II: Introducción a las Ecuaciones Diferenciales Parciales						
6.	Ecuaciones de Tipo Hiperbólico	20	0				
7.	Ecuaciones de tipo Parabólico	12	0				
8.	Ecuaciones de tipo Elíptico	12	0				
	Total de horas:	96	0				
	Suma total de horas:	Ġ	16				

Contenido Temático

Unidad	Tema						
Parte I. Ecuaciones Diferenciales Ordinarias							
1.	1. Ecuaciones Diferenciales de 1er Orden 1.1. Definición y significado geométrico. 1.2. Ecuaciones lineales (aplicaciones). 1.3. Variables separables (aplicaciones). 1.4. Ecuaciones diferenciales exactas y factor de integración (aplicaciones).						
2.	 Existencia y unicidad de soluciones 2.1. Teorema de existencia y unicidad (sin demostración). 2.2. Introducción a Matlab. 2.3. Métodos Numéricos. 						
3.	 Ecuaciones Diferenciales de 2º Orden 3.1. Problemas de condiciones iniciales y problemas de condiciones en la frontera. 3.2. Ecuaciones lineales de 2º Orden. 3.3. Coeficientes constantes. 3.4. Transformada de Laplace. 3.5. Discontinuidades y funciones de impulso. 						
4.	 4. Ecuaciones diferenciales de 2º Orden con coeficientes variables 4.1. Solución en serie. 4.2. Ecuación de Euler. 4.3. Puntos singulares regulares y método de Frobenius. 4.4. Funciones especiales. 						
5.	 5. Sistemas de Ecuaciones 5.1. Sistemas de ecuaciones lineales homogéneos. 5.2. Sistema de ecuaciones lineales no homogéneos. 5.3. Interpretación geométrica y aplicaciones. 5.4. Introducción a sistemas no lineales. 						
	Parte II: Introducción a las Ecuaciones Diferenciales Parciales						
6.	 6. Ecuaciones de tipo Hiperbólico 6.1. Problemas que conducen a ecuaciones de tipo hiperbólico. 6.2. Oscilaciones transversales de una cuerda. 6.3. Oscilaciones longitudinales de barras y cuerdas. 6.4. Método de propagación de las ondas. 6.5. Método de separación de variables. 						
7.	 7. Ecuaciones de tipo Parabólico 7.1. Problemas que conducen a ecuaciones de tipo parabólico. 7.2. Propagación del calor. 7.3. Ecuación de difusión. 7.4. Método de separación de variables. 						
8.	8. Ecuaciones de tipo Elíptico 8.1. Problemas que se reducen a la ecuación de Laplace. 8.2. Campo térmico estacionario.						

- 8.3. Problemas de potencial.
- 8.4. Fórmulas de Green.
- 8.5. Resolución de problemas simples por método de separación de variables.

Bibliografía básica:

Boice, W., DiPrima, R., 2004, *Elementary Differential Equations and Boundary Value Problems*, Wiley, New York.

Edwards, C. H., Penney, D. E., *Ecuaciones diferenciales elementales y problemas con condiciones a la frontera*, Prentice Hall, México.

Bibliografía complementaria:

Cooper, J. M., 1998, Introduction to Partial Differential Equations with MatLab, Birkhäuser, Boston.

Hubbard, J. H., West, B. H., 1995, *Differential Equations: A Dynamical Systems Approach*, Springer-Verlag, Berlin.

Zill, D. G., Wright, W. S., 1995, *Differential Equations with Computer Lab Experiments*, PWS Publishing Company, Boston.

Cibergrafía:

Sugerencias didácticas:		Métodos de evaluación:		
Exposición oral Exposición audiovisual Ejercicios dentro de clase Ejercicios fuera del aula Seminarios Lecturas obligatorias Trabajo de investigación Prácticas de taller o laboratorio Prácticas de campo Otras:	(x) (x) (x) (x) (x) () (x) ()	Exámenes parciales Examen final escrito Trabajos y tareas fuera del aula Exposición de seminarios por los alumnos Participación en clase Asistencia Seminario Otros:	(x) (x) (x) (x) (x) (x) (x) (x) (x)	
	_			

Perfil profesiográfico:

Matemático o Físico, preferentemente con experiencia en Matemáticas Aplicadas