

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PROGRAMA ÚNICO DE ESPECIALIZACIONES EN CIENCIAS BIOLÓGICAS, FÍSICAS Y MATEMÁTICAS ESPECIALIZACIÓN EN BIOLOGÍA PARA EL BACHILLERATO

Facultad de Ciencias Programa de Actividad Académica

Denominación: Evolución							
Clave: 40426	Semestre: 2				No. Créditos: 6		
Carácter: Obliga	atorio	Но	oras	Horas por semana	Horas al Semestre		
Tipo: Teórica		Teoría: 3	Práctica: 0	3	48		
Modalidad Curso		Duración del programa: Semestral					

Seriación: No (X) Si () Obligatoria () Indicativa ()

Actividad Académica Antecedente: Ninguna
Actividad Académica Subsecuente: Ninguna

Objetivo general:

Que los alumnos logren conceptualizar y llevar a la práctica en las aulas, mediante la actualización del conocimiento del proceso evolutivo, que el pensamiento evolutivo es un pensamiento articulador de la biología.

Objetivos específicos:

- Que el alumno aprenda cómo se mantiene el equilibrio de los genes en las poblaciones, qué factores lo rompen y su relación con la evolución de los seres vivos.
- Que el alumno conozca con algunos ejemplos la evolución a nivel molecular y las diferencias entre la explicación de evolución por selección natural y evolución bajo la teoría neutralista de la evolución.
- Que el alumno comprenda la diferencia entre micro y macro-evolución, y utilice la Biología molecular como herramienta para el estudio de la evolución.
- Que el alumno aprenda los conceptos de adaptación, especie y especiación.
- Que el alumno pueda formular ejemplos de usos de la biología evolutiva en el terreno de la agricultura, la salud, y la conservación.

Índice Temático				
Unidad	Tema	Horas		
Officac	Tema	Teóricas	Prácticas	
1	Introducción histórica	8	0	
2	Los procesos evolutivos en las poblaciones	8	0	
3	La adaptación	8	0	
4	La evolución molecular	8	0	
5	Los conceptos de especie y los procesos de especiación	8	0	
6	La macroevolución	8	0	
	Total de horas:	48	0	
Suma total de horas:		48		

Contenido Temático

Unidad	Tema y Subtemas				
	Introducción histórica				
1	1.1. Evidencias de la evolución				
2	Los procesos evolutivos en las poblaciones				
	2.1. Poblaciones en equilibrio, el principio de Hardy-Weinberg				
	2.2. Mutación, deriva génica, endogamia, migración, selección natural				
3	La adaptación				
	3.1. La adaptación y la selección Natural				
	3.2. Los métodos comparativo, experimental y observacional				
	3.3. La coevolución, la selección sexual y la evolución de la conducta				
4	La evolución molecular				
	4.1. La teoría neutral de evolución molecular				
	4.2. Filogenias Moleculares (Distancia, Parsimonia, Bayesianos)				
	4.3. La genómica evolutiva				
5	Los conceptos de especie y los procesos de especiación				
	5.1. Los conceptos de especie				
	5.2. Los modelos geográficos				
	5.3. Los modelos genéticos				
6	La macroevolución				
	6.1. La teoría del equilibrio puntuado				
	6.2. La evolución del desarrollo				
	6.3. La extinción y la diversificación				
	6.4. Simbiogénesis y endosimbiosis				
	6.5. Principios de Biogeografía				

Bibliografía Básica:

- Crisci JV, Katinas L, Posadas P (2003) Historical biogeography: An introduction. Harvard University Press. London.
- Espinosa, D., J.J. Morrone, J. Llorente y O. Flores Villela. 2002. Introducción al análisis de patrones en Biogeografía Histórica. Las Prensas de Ciencias, Fac. Ciencias, UNAM. México, D.F. 133 p. ISBN 968-36-9912-X. 1ª. Edición.
- Futuyma, D. 2009. Evolution. Sinauer Associates. Sundeland Massachusetts.
- Gould, S.J. 2000. The Structure of Evolutionary Theory. Belknap Press of Harvard University Press.
- Hartl, D.L. y A.G. Clark. 2007. Principles of Population Genetics (4a ed.). Sinauer Associates, Sunderland, Mass.
- Hedrick, P.W. 2005. Genetics of Populations. (3rd ed.) Jones and Bartlett.
- Li, W.H. y D. Graur. 2000. *Fundamentals of Molecular Evolution*. 2a edición. Sinauer Associates, Sunderland, Massachusetts.
- Li, W-H. 1997. Molecular Evolution. Sinauer Associates, Sunderland Massachusetts.

- Maynard-Smith, J. 1998. Evolutionary Genetics (2nd ed.). Oxford University Press.
- Nei, M. and Kumar, S. 2000. Molecular Evolution and Phylogenetics. Oxford University Press.
- Page. R.D.M. and Holms, E.C. 1998. Molecular Evolution: a Phylogenetic Approach. Blackwell Science.
- Ridley, M. 2003. Evolution. 3a edición. Blackwell Publishing, Incorporated. MA, USA.
- Ridley, M. (ed). 2004. Evolution. 2a edición. Oxford Readers Press, USA.
- Strickberger, M. 2000. Evolution. 3a. edición. Jones & Bartlett Pub.
- Templeton, A. 2006. Population Genetics and Evolutionary Theory. John Wiley and Sons Inc. Hoboken, New Jersey.

Bibliografía Complementaria:

- Cracraft, J.; Donoghue, M. J., eds. (2005). Assembling the tree of life. Oxford University Press.
- Dobzhansky, T. (1973). "Nothing in biology makes sense except in the light of evolution". The American Biology Teacher 35 (3): 125–129.
- Hall, B. K.; Hallgrímsson, B., eds. (2008). Strickberger's Evolution (4th ed.). Jones & Bartlett.
- Hurst LD (2009). "Fundamental concepts in genetics: genetics and the understanding of selection". Nat. Rev. Genet. 10 (2): 83–93.
- Jablonka, E.; Lamb, M. (2005). Evolution in four dimensions: Genetic, epigenetic, behavioral and symbolic variation in the history of life. MIT Press.
- Kimura M (1991). "The neutral theory of molecular evolution: a review of recent evidence". Jpn. J. Genet. 66 (4): 367–86.
- Kocher TD (2004). "Adaptive evolution and explosive speciation: the cichlid fish model". Nat. Rev. Genet. 5 (4): 288–98.
- Margulis, Lynn; Fester, René (1991). Symbiosis as a source of evolutionary innovation: Speciation and morphogenesis. The MIT Press.
- Orr H (2005). "The genetic theory of adaptation: a brief history". Nat. Rev. Genet. 6 (2): 119–27.
- Okasha, S. (2007). Evolution and the Levels of Selection. Oxford University Press.

	Mecanismos de evaluación de aprendizaje de los		
(X)	alumnos:		
(X)	Exámenes Parciales	(X)	
(X)	Examen final	(X)	
()	Trabajos y tareas	(X)	
(X)	Exposición de tema	(X)	
(X)	Participación en clase	(X)	
()	Asistencia	(X)	
(´)	Seminario	()	
()	Otras: (especificar)	()	
	(X) (X) () (X)	(X) alumnos: (X) Exámenes Parciales (X) Examen final () Trabajos y tareas (X) Exposición de tema (X) Participación en clase () Asistencia	

Línea de investigación:

Evolución biológica

Perfil profesiográfico:

Que el profesor se dedique a la investigación en esta disciplina y tenga el grado de Maestro o Doctor. Además, demostrar experiencia docente.