Encabezado Facultad de Ciencias
Presentación

Matemáticas (plan 1983) 2014-2

Segundo Semestre, Cálculo Diferencial e Integral II

Grupo 4055 13 alumnos.
Profesor Flor de María Aceff Sánchez lu a sá 9 a 10 P102
Ayudante Lizbeth Peñaloza Velasco lu mi vi 10 a 11 P102
 

Temario

1. Integral definida

1.1. Ejemplos que conducen al concepto de integral definida (área bajo una curva, trabajo).

1.2. Sumas superiores e inferiores (o sumas de Riemann).

1.3. Definición y ejemplos de la integral definida de una función continua.

1.4. Propiedades básicas de la integral definida.

1.5. Teorema del valor medio para la integral.

1.6. Ejemplos de funciones integrables con un número finito de puntos de discontinuidad.

1.7. Ejemplos de funciones integrables con un número infinito de puntos de discontinuidad.

1.8. La función de Riemann.

2. Teorema Fundamental del Cálculo

2.1. La integral como función del límite superior (integral indefinida).

2.2. Propiedades de la integral indefinida.

2.3. Demostración de los teoremas fundamentales del Cálculo.

2.4. Integración directa.

2.5. Integrales impropias.

2.6. Criterios de convergencia de las integrales impropias.

3. Las funciones logaritmo y exponencial

3.1. Definición de la función logaritmo a través de la integral.

3.2. Propiedades de las funciones logarítmicas.

3.3. La función exponencial como inversa de la función logaritmo.

3.4. Propiedades de las funciones exponenciales.

3.5. Derivación logarítmica.

3.6. Funciones que sólo pueden expresarse en términos de una integral: Funciones elípticas.

4. . (Opcional) Las funciones trigonométricas a través de la integral

4.1. Definición de por medio de una integral.

4.2. Propiedades de las funciones trigonométricas.

4.3. Funciones trigonométricas inversas.

5. Métodos de integración y aplicaciones de la integral definida

5.1. Método de sustitución o cambio de variable.

5.2. Integración por partes.

5.3. Teorema del valor medio para integrales.

5.4. Polinomios de Taylor y forma de Cauchy del residuo.

5.5. Fracciones parciales; método de coeficientes indeterminados para la integración de funciones racionales.

5.6. Métodos numéricos de integración.

6. Aplicaciones

6.1. Cálculo de áreas de regiones planas.

6.2. área en coordenadas polares.

6.3. Longitud de una curva y distancia recorrida por una partícula.

6.4. Volumen y área de sólidos de revolución.

6.5. Trabajo, densidad y masa.

6.6. Cálculo de momentos.

6.7. Problemas de decaimiento radioactivo, ley de Malthus, oscilación de un resorte, ecuación logística.

7. Series

7.1. Definición y ejemplos de sucesiones y series convergentes y no convergentes.

7.2. Criterios de convergencia para sucesiones y para series con términos positivos.

7.3. Series alternantes y convergencia absoluta de una serie.

7.4. Criterio de Leibniz.

7.5. Reordenamiento de los términos de una serie.

7.6. Ejemplos elementales de series de potencias.

Ejemplos de series de Fourier.

 


Hecho en México, todos los derechos reservados 2011-2016. Esta página puede ser reproducida con fines no lucrativos, siempre y cuando no se mutile, se cite la fuente completa y su dirección electrónica. De otra forma requiere permiso previo por escrito de la Institución.
Sitio web administrado por la Coordinación de los Servicios de Cómputo de la Facultad de Ciencias. ¿Dudas?, ¿comentarios?. Escribenos.